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A Multilevel Approach to Class of Semidefinite Programs

Fu Lin, Zichao Di, and Sven Leyffer

Abstract— We consider a class of semidefinite programs
that arises from combinatorial optimization problems on
graphs. We propose a multilevel approach that produces a
sequence of progressively coarser problems by coarsening
the underlying graphs. We use the solution of each coarse
problem to provide an initial approximation to the solution
at a finer level. At the coarsest level we employ Newton’s
method for high-accuracy solutions, and at finer levels
we take advantage of the inexpensive coordinate descent
updates. We coarsen the graph based on an algebraic
distance that can be computed efficiently. Furthermore, our
coarsening scheme preserves the properties of the graph
Laplacian matrix between fine and coarse levels. Numerical
experiments indicate the competitiveness of the hybrid
multilevel approach compared with state-of-the-art SDP
solvers for both synthetic graphs and real-world power
networks.

Keywords: Algebraic distance, coarsening graphs,
coordinate descent, multilevel methods, power networks,
semidefinite programs.

I. INTRODUCTION

Semidefinite programs (SDPs) are playing an increas-
ingly important role in optimization and control. In
many modern applications on networks, the underlying
graphs are large but sparse. Multilevel methods have
been successful in optimization problems involving these
large, sparse graphs [1]–[4].

In this paper, we develop a multilevel approach for a
class of SDPs that arise from combinatorial optimiza-
tion on graphs. We build a sequence of graphs that
approximate the original graph. Consequently, we obtain
a hierarchy of approximate problems whose solutions
are used to initialize iterative methods on the finer-level
problems. This multilevel process is repeated until the
solution of the original problem is found.

An advantage of the multilevel framework is its
degree of freedom in choosing iterative methods at
different problem levels. At the coarsest level with small
problem sizes, we employ Newton’s method to obtain
highly accurate solutions. At the finer levels, we take
advantage of inexpensive coordinate descent updates to
find approximate solutions.
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Coordinate descent methods have received renewed
interest in recent years, starting from Nesterov’s seminal
paper [5]. Their simplicity and potential for parallelism
make coordinate descent methods well suited to many
modern applications with large data sets [6], [7]. The use
of coordinate descent methods for SDPs has appeared
recently in the literature [8], [9]. However, contrast to
the latter approaches [8], [9] that focus on the primal
formulation of SDPs, we apply coordinate descent meth-
ods to the dual formulation. This allows us to exploit the
sparsity structure of the underlying graphs. Furthermore,
the graph structure provides insight into the restriction
and prolongation schemes that are essential components
of the multilevel methods.

A crucial component of a multilevel method is its
coarsening scheme. The challenge of designing a coars-
ening scheme is to strike a balance between the interpo-
lation accuracy and the computation efficiency [1], [3].
We propose a coarsening scheme based on the algebraic
distance [2], [3] that can be computed efficiently. Our
coarsening scheme also preserves basic properties (e.g.,
positive semidefiniteness and zero row-sum) of the graph
Laplacian matrices.

Our presentation is organized as follows. In Section II,
we discuss the advantage of using the dual formulation
of the class of SDPs. In Section III, we introduce a
restriction/prolongation scheme and show its basic prop-
erties. In particular, our restriction/prolongation scheme
preserves the graph Laplacian structure between the
fine and coarse levels. In Section IV, we propose a
multilevel framework in which Newton’s method and
coordinate descent methods are employed at different
levels. In Section V, we compare the performance of
our multilevel method with SDPT3 for synthetic graphs
and real power networks. In Section VI, we conclude
the paper by summarizing our contributions.

II. PROBLEM STATEMENT

Recall the standard form of the semidefinite programs

maximize Tr(LX)

subject to A(X) = b

X � 0,

where X ∈ Sn is the decision variable, L ∈ Sn and
b ∈ Rm are the problem data, Sn denotes the set of
n-by-n symmetric matrices, A : Rn×n → Rm is a



linear operator, Tr(LX) :=
∑n
i,j=1 LijXij , and X � 0

denotes positive semidefinite matrices.
In this paper, we focus on a special class of linear

operators, namely,

A(X) = diag(X),

which takes the diagonal of X into Rn. Thus, we
consider

maximize Tr(LX)

subject to diag(X) = b

X � 0.

(1)

Note that b must be elementwise nonnegative for (1) to
be feasible. This class of SDPs arises from several appli-
cations, including the classic max-cut problem [10], the
phase retrieval problem [9], and several combinatorial
optimization problems [11].

The data matrix L is typically large but sparse in
combinatorial problems on graphs. In this context, the
sparsity structure of the graph Laplacian matrix L is
determined by the graph structure. To take advantage of
sparsity, we follow [11] and consider the dual problem

minimize bT y

subject to Z = Diag(y) − L

Z � 0,

(2)

where Z ∈ Sn and y ∈ Rn are the dual variables
and Diag(y) is a diagonal matrix with y on the main
diagonal. Therefore, the dual variable Z has the same
sparsity structure as L. This is in contrast to the dense
matrix X in the primal formulation (1).

Introducing a log-barrier function for the positive
semidefinite cone, we approximate (2) with an uncon-
strained problem

minimize fµ(y) = bT y − µ log det(Diag(y)−L), (3)

where the parameter µ belongs to (0,∞) and a smaller µ
implies a more accurate approximation [12]. Therefore,
solving a sequence of barrier problems (3) with µ →
0 provides a sequence of solutions converging to the
solution of (2).

III. RESTRICTION AND PROLONGATION

In this section, we introduce a restriction and pro-
longation scheme that preserves the basic properties of
graph Laplacian matrices. We show that the Laplacian
matrix of a graph under the restriction or prolongation
operation is the Laplacian matrix of another graph. Fur-
thermore, we show that the dual (resp. primal) feasibility
is preserved under the restriction (resp. prolongation)
operator.

A. Restriction

Given a Laplacian matrix L ∈ Sn+, we require that the
coarsened matrix Lc := R(L) be symmetric, positive
semidefinite with zero row-sums

Lc ∈ Sr+, Lc1r = 0, (4)

where 1r denotes the vector of all ones. Consider a
restriction matrix with binary elements R ∈ {0, 1}n×r
such that

R1r = 1n, rank(R) = r. (5)

The dimension after the restriction is r < n, and
typically r ≈ n/2.

Lemma 3.1: Let L be a graph Laplacian matrix (i.e.,
L ∈ Sn+ and L1n = 0). Let the restriction matrix R be
defined in (5). Then Lc = RTLR satisfies (4).

Proof: By construction, Lc = RTLR � 0. To
show that Lc has zero row-sums, we compute Lc1r =
RTLR1r = RTL1n = 0.

It is instructive to study the sparsity structure of the
restriction matrix R. Let the support of a vector v ∈ Rn
be the index set of its nonzero elements

supp(v) := {i | vi 6= 0}.

Then we have the following characterization of R.
Proposition 3.1: Let R = [R1R2 · · ·Rr ] ∈ Rn×r

be a matrix whose elements are either 0 or 1. Then (5)
holds if and only if

supp(Ri) 6= ∅, i = 1, 2, . . . , r (6a)
supp(Ri) ∩ supp(Rj) = ∅, ∀i 6= j (6b)

∪ri=1 supp(Ri) = {1, 2, . . . , n}. (6c)
Proof: We begin with the (5) ⇒ (6) part. Since

R has full-column rank, no column of R is identically
zero; hence condition (6a) holds. Since elements of R
are binary and R1r = 1n, it follows that each row of R
has one and only one nonzero element. Therefore, the
support of two columns of R is exclusive as in (6b), and
the support of all columns covers all indices as in (6c).

For the (5) ⇐ (6) part, we note that (6b) implies
R1r ≤ 1n and the equality is attained when (6c) holds.
The proof is complete by noting that rank(R) = r
follows from (6b) and (6a).

For example, a restriction matrix that combines node
1 and node 3 in a 3-node graph is given by

R =

 1 0
0 1
1 0

 , RTR =

[
2 0
0 1

]
.

Thus, coarsening a 3-node complete graph yields

L =

 2 −1 −1
−1 2 −1
−1 −1 2

 , RTLR =

[
2 −2
−2 2

]
.



Note that the coarsened 2-node graph has its edge weight
equal to the sum of the two edges in the original graph;
see Fig. 1.

The columns of R are orthogonal. In fact, columns of
R are orthogonal with respect to any diagonal matrix,
that is,

RTDiag(v)R = Diag(u), (7)

where v ∈ Rn, u ∈ Rr, and

ui =
∑

k∈ supp(Ri)

vk, i = 1, 2, . . . , r.

In particular, setting v = 1n in (7), we get

RTR = Diag(u),

where
ui = 1TnRi, i = 1, 2, . . . , r.

In other words, the ith element of u is equal to the
number of nonzero elements in the ith column of R.
Therefore,

u = RT1n. (8)

B. Prolongation

We next consider the prolongation operator that maps
Rr×r back to Rn×n. Let

P := RW, (9)

where W is a diagonal weight matrix defined as

W := (RTR)−1 = (Diag(u))−1. (10)

By definition, we have

RTP = RTRW = Ir (11)

and
PTP = WRTRW = W. (12)

We next show that the prolongation of a Laplacian
matrix is still a graph Laplacian.

Lemma 3.2: Let Lc be a graph Laplacian matrix, that
is, Lc ∈ Sr+ and Lc1r = 0. Then L = PLcP

T is a graph
Laplacian matrix.

Proof: By construction, we have L = PLcP
T � 0

and
L1n = PLcWRT1n = PLcWu,

where we used (9) to get the first equality and (8) to get
the second equality. From (10), it follows that Wu = 1r.
Therefore, L1n = PLc1r = 0.

For example, a prolongation matrix P from a 2-node
graph to a 3-node graph is given by

P =

 1
2 0
0 1
1
2 0

 , R =

 1 0
0 1
1 0

 , PTR =

[
1 0
0 1

]
.

(13)

Figure 1 illustrates that the prolongation from a 2-node
graph yields a 3-node graph with a negative edge:

Lc =

[
2 −2
−2 2

]
, PLcP

T =

 1/2 −1 1/2
−1 2 −1
1/2 −1 1/2

 .
The restriction operator is the inverse of the prolon-

gation operator, but not vice versa. Let L = PLcP
T

be the prolongation of Lc, and let L̄c = RTLR be
the restriction of L. From (11), it follows that L̄c =
RTPLcP

TR = Lc. The reverse is not true; that is,
L 6= PRTLRPT .

C. Primal and Dual Feasibility

We next show that dual feasibility is preserved under
restriction. Let Z and Zc be the dual feasibility set at
the fine and the coarse level, respectively:

Z := {Z ∈ Sn |Z = Diag(y) − L},
Zc := {Zc ∈ Sr |Zc = Diag(yc) − Lc}.

Lemma 3.3: Let Zc = RTZR, Lc = RTLR, and
yc = diag(RT Diag(y)R). If Z ∈ Z , then Zc ∈ Zc.

Proof: Since R is orthogonal with respect to a
diagonal matrix (see (7)), it follows that

Diag(yc) = RTDiag(y)R.

Thus, we have

Zc = RTDiag(y)R − RTLR = Diag(yc) − Lc.

We conclude this section by showing that primal
feasibility is preserved under prolongation. Let X and
Xc be the feasibility set of the primal formulation (1) at
the fine and the coarse level, respectively:

X := {X ∈ Sn | diag(X) = b},
Xc := {Xc ∈ Sr | diag(Xc) = bc}.

Lemma 3.4: Let X = PXcP
T , and let b =

diag(P Diag(bc)P
T ). If Xc ∈ Xc, then X ∈ X .

Proof: We begin by noting that diag(Xc) = bc can
be written as Xc ◦ I = Diag(bc), where ◦ denotes the
Hadamard product and I denotes the identity matrix. Let
J be the matrix of all ones. Then we have

Xc ◦ I = Xc − Xc ◦ (J − I).

Substituting into b = diag(P (Xc ◦ I)PT ) yields

b = diag(X) − diag(P (Xc ◦ (J − I))PT ). (14)

Then it suffices to show that the second term in (14) is
zero, that is, the diagonal of M = P (Xc ◦ (J − I))PT

is identically zero.
Since each row of R has only one nonzero ele-

ment (see Proposition 3.1) and since W is a diagonal
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Fig. 1: A 3-node graph (left), the coarsened 2-node graph via aggregation of nodes 1 and 3 (center), and the
prolongation back to another 3-node graph (right). Note that a negative edge weight results from prolongation.
Here, the restriction matrix R and the prolongation matrix P are given by (13).

matrix in the definition of P = RW , it follows that each
row of P has only one nonzero element. Let Pi be the
ith row of P , and let si = supp(Pi). Then

Msisi = Pi(Xc ◦ (J − I))PTi = (Xc ◦ (J − I))sisi .

Since the main diagonal of Xc ◦ (J − I) is identically
zero by construction, we conclude that Msisi = 0 for
i = 1, 2, . . . , n. This completes the proof.

IV. A MULTILEVEL METHOD

Similar to standard multigrid methods [13], our mul-
tilevel approach starts with the original problem and
builds a sequence of approximate problems with smaller
sizes. We coarsen the problem until it can be solved
efficiently (e.g., using Newton’s method). We then pro-
longate the coarse level solution back to a finer level
and initialize an iterative scheme (e.g., the coordinate
descent method) to find an approximate solution at the
finer level. We repeat this process until we reach the
finest level and solve the original problem of interest.

Our multilevel framework for the log-barrier function
minimization problem (3) is given by Algorithm 1. We
describe the main components, namely, the coordinate
descent method and the coarsening scheme, in Sec-
tions IV-A and IV-B, respectively.

Since we employ Newton’s method (e.g., see [12,
Chapter 9.5]) at the coarsest level, we next provide
expressions for the gradient and the Hessian of the log-
barrier function fµ(y) in (3). Let

S(y) := (Diag(y)− L)−1. (15)

Then the first-order and the second-order derivatives of
fµ(y) are given, respectively, by

∇fµ(y) = b − µ diag (S(y)) ,

∇2fµ(y) = µ (S(y) ◦ S(y)),

where ◦ denotes the Hadamard product of two matrices.
Recall that µ > 0 and bi ≥ 0 for i = 1, . . . , n.

Algorithm 1 A Multilevel Algorithm for (3).

1: Inputs: Problem data L � 0, b ≥ 0, µ > 0 and an
initial guess y0 ∈ Rn such that Diag(y0)− L � 0.

2: Outputs: An approximate solution y? for (3).
3: if The problem size n ≤ nNT then
4: Solve (3) using Newton’s method.
5: else
6: Apply coordinate descent (see Algorithm 2)

yCD ← CD(y0).

7: Coarsen the problem

Lc ← RTLR,

bc ← diag(RT Diag(b)R ),

y0c ← diag(RT Diag(yCD)R ).

8: Call Algorithm 1 for the coarsened problem

yc ← Multilevel(Lc, bc, y
0
c ).

9: Prolongate the solution back to a finer level

yp ← diag(P Diag(yc)P
T ).

10: Refine the solution via coordinate descent

y? ← CD(yp).

A. Coordinate Descent

We employ the coordinate descent (CD) method be-
cause of its simplicity and effectiveness [5] and its
ability for parallelism [7]. Since the log-barrier func-
tion (3) is convex, the minimization with respect to the



ith coordinate is equivalent to solving ∂fµ
∂yi

= 0. We
fix yj for j 6= i and seek a solution to the first-order
condition for optimality, which can be written as(

(Diag(y) + L + ∆yieie
T
i )−1

)
ii

= bi/µ.

For the log-barrier problem (3), we next show each
CD step can be solved analytically. Furthermore, the
solution is guaranteed to satisfy the positive semidefinite
constraint; see Lemma 4.1.

Lemma 4.1: Let y be such that1 S = (Diag(y) −
L)−1 � 0, and let ei be the ith coordinate vector of Rn.
The solution of the nonlinear scalar equation in ∆yi,(

S−1 + ∆yieie
T
i

)−1
ii

= bi/µ,

is unique and is given by

∆yi =
µ

bi
− 1

Sii
. (16)

Furthermore, the resulting matrix is positive definite:

S−1 + ∆yieie
T
i � 0. (17)

Proof: Using the Sherman-Morrison formula, we
have

bi/µ = eTi
(
S−1 + ∆yieie

T
i

)−1
ei

= eTi

(
S − ∆yiSeie

T
i S

1 + ∆yie
T
i Sei

)
ei

= Sii −
∆yiSiiSii
1 + ∆yiSii

=
Sii

1 + ∆yiSii
.

Taking the inverse on both sides yields (16).
Since S � 0, the positive definiteness condition (17)

follows immediately if ∆yi ≥ 0. If ∆yi < 0, then
from the interlacing eigenvalue theorem [14, Theorem
4.3.4], we conclude that S−1+∆yieie

T
i has at most one

negative eigenvalue. Suppose that S−1 + ∆yieie
T
i has

one negative eigenvalue. Then its determinant must be
negative. From the matrix determinant identity, however,
we have

det(S−1 + ∆yieie
T
i ) = (1 + ∆yie

T
i Sei) det(S−1)

= (µSii/bi) det(S−1) ≥ 0.

This contradicts the assumption that S−1 + ∆yieie
T
i

has a negative eigenvalue. Thus, (17) holds even when
∆yi < 0. This completes the proof.

We can now describe the coordinate descent method
in Algorithm 2.

Note that the coordinate descent in Algorithm 2 re-
quires only a single matrix inverse, whose computational

1One choice is y = 2 · abs(L)1 where abs(·) takes the absolute
value elementwise. This is a valid choice for Diag(y)−L � 0 because
L is diagonally dominant and positive semidefinite.

Algorithm 2 Coordinate Descent Method for (3).

1: Let y ← y0 such that S = (Diag(y)− L)−1 � 0.
2: Compute the residual r := b − µ diag(S) and start

the counter Iter = 0.
3: while ‖r‖ > ε and Iter ≤ MaxIter do
4: Let i := arg maxk |rk| for k = 1, . . . , n.
5: Let y ← y+ ∆yiei where ∆yi is given by (16).
6: Rank-1 update to S

S ← S −
(

∆yi
1 + ∆yiSii

)
Seie

T
i S. (18)

7: Iter ← Iter + 1.

complexity is O(n3). On the other hand, the rank-
1 update (18) takes O(n2) operations. If we let the
maximum number of CD steps grow linearly with n,
then the computational complexity of Algorithm 2 is
O(n3) operations. Similarly, the change of the objective
function (3) that resulted from the rank-1 update can
be computed efficiently by using the matrix determinant
identity

fµ(y + ∆yiei) = fµ(y) + ∆yibi − µ log(1 + ∆yiSii).

B. Coarsening Scheme and the Algebraic Distance

The only component that remains to be explained in
our multilevel method is the coarsening scheme, namely,
the generation of the restriction matrix R. Several ap-
proaches exist in the literature with different emphasis
on the interpolation accuracy and the sparsity of the
resulting graphs [1]–[3]. Our coarsening scheme is based
on the coarsening scheme develop by Ron, Safro, and
Brandt in [3], which is proved effective for several
combinatorial optimization problems on graphs.

Roughly speaking, the coarsening scheme can be
divided into three steps.

1) Choose a set of seeds that will be the nodes in the
coarsened graph.

2) Aggregate nonseed nodes to the designated seeds.
3) Assign the edge weights for the coarsened graph.

Since the coarsened graph should be similar to the
original graph, it is important to quantify the distance
between a pair of nodes in the uncoarsened graph. While
a distance based on geometric proximity is intuitively
appealing, it may not produce a reasonable coarsened
graph for the optimization problem (3) in hand.

Following [3], we consider the algebraic distance
that is determined by the residual after a number of
coordinate descent steps. Starting with a set of K test
vectors y1, y2, . . . , yK , we run a fixed number of CD
steps to get y(k) ← CD(yk) for k = 1, . . . ,K. The
algebraic distance between nodes i and j is defined



as [3]

dij :=

(
K∑
k=1

∣∣∣y(k)i − y
(k)
j

∣∣∣p)1/p

,

where p ≥ 2. A typical choice for the p-norm is the
2-norm or the ∞-norm:(

K∑
k=1

∣∣∣y(k)i − y
(k)
j

∣∣∣2)1/2

or
K

max
k=1

∣∣∣y(k)i − y
(k)
j

∣∣∣ .
When K = 1, both norms coincide to be

dij =
∣∣∣y(1)i − y

(1)
j

∣∣∣ . (19)

The algebraic coupling between i and j is the reciprocal
of the algebraic distance

cij := 1/dij .

In choosing the seeds (i.e., the nodes in the coarsened
graph), the basic idea is that the seeds should carry
significant mass of the original graph. Let v ∈ Rn be
the mass of the nodes in the original graph (e.g., v = 1.)
The mass of node i weighted by its algebraic coupling
with its neighbors is defined as [3]

vi := vi +
∑

(i,j)∈E

vj ·
cij∑

(j,k)∈E cjk
, (20)

where E is the set of edges in the uncoarsened graph.
Note that for a fixed i, the set (i, j) ∈ E denotes
the edges that connect to i. Therefore, the summation∑

(i,j)∈E vj ·
cij∑

(j,k)∈E cjk
is the weighted sum of the mass

of i’s neighbors. In particular, the weight cij∑
(j,k)∈E cjk

is
the ratio of the coupling strength cij to the total coupling
strength of the neighbors of node j.

We choose the nodes with the r-largest weighted
masses to be the set of seeds (typically r ≈ n/2),
denoted as C, in the coarsened graph. If two or more
nodes have the same mass, then we arbitrarily choose
one of them.

Having decided on the seeds, we next aggregate
nonseed nodes to the seeds. In principle, a nonseed node,
say j, can belong to one or more seeds. Therefore, it
may split into several parts with each part aggregating
with the designated seed [3]. In this paper, we let each
nonseed node to be aggregated with only one seed. The
choice of the seed node, say sj , is determined by

sj := arg max
i∈C,(i,j)∈E

cij .

In other words, j belongs to the seed i that has the
strongest coupling with j among all neighboring seeds.
If no neighbor of j is a seed, then we choose any
seed that provides the strongest coupling, that is, sj =
arg max cij for i ∈ C.

V. NUMERICAL EXPERIMENTS

We implement our multilevel algorithm in Matlab
as a prototype. We note that the implementation has
much room for improvement. Nevertheless, we verify
the correctness of the multilevel approach and compare
the computational time with that of the state-of-the-art
solver SDPT3 [15].

We consider two sets of examples: complete graphs
and power grid networks. The complete graphs are
used to illustrate the scaling trend of the multilevel
approach. The power grid examples are used to show the
applicability of our multilevel approach to more realistic
networks.

We set the log-barrier parameter to be µ = 10−3; the
maximum number of CD steps to be MaxIter = n; the
stopping criterion for CD to be ‖r‖ ≤ ε

√
n where ε =

10−3; and the stopping criterion for Newton’s method
to be Newton decrement less than 10−6. Numerical
experiments are performed on a workstation with 32 GB
memory and two Intel E5430 Xeon 4-core 2.66 GHz
CPUs running Matlab R2013a in Ubuntu 12.04.

A. Complete Graphs

A complete graph is a graph in which each pair of
vertices is connected by an edge. The Laplacian matrix
is L = nI−J , where J is the matrix of all ones. We set
the threshold size for Newton’s method to be nNT = 250
and test on problem size n = 250, 500, 1000, 2000, and
4000. Thus, the number of levels for the problem set is
l = 1, 2, 3, 4, and 5.

Figure 2 shows that the relative objective function
value between SDPT3 and our multilevel approach,

dobj := |fSDPT3 − fML|/fSDPT3, (21)

is less than 10−3 for all cases. Furthermore, the rela-
tive error is monotonically decreasing as n increases.
Similarly, the solution value between SDPT3 and the
multilevel approach,

dsol := ‖ySDPT3 − yML‖2/‖ySDPT3‖2, (22)

is less than 10−3 for all cases and monotonically
decreasing as n increases; see Fig. 3. On the other
hand, as shown in Fig. 4, the multilevel approach takes
approximately 25% of the time required by SDPT3 for
small problems (n = 250) and 75% of the time required
by SDPT3 for large problems (n = 4000).

B. IEEE 118-Bus Test Case

We consider the IEEE 118-bus test case taken from
MATPOWER [16]. A diagram of the test case is shown
in Fig. 5. In this context, the max-cut problem can
be interpreted as cutting power lines to achieve the
maximum (worst case) loss in the power transmission.
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Fig. 5: Diagram of the IEEE 118-bus test case.

Since the network is small, with only n = 118 nodes,
the multilevel approach simplifies to the single-level
Newton’s method. We verify the solution with SDPT3.
In particular, the relative difference in the objective
value (21) is dobj = 4.4561 × 10−4, and the relative
difference in the solution (22) is dsol = 7.3132× 10−5.
The amount of time that the multilevel algorithm takes
is 29.75% of the time that SDPT3 takes.

To illustrate the multilevel approach, however, we next
coarsen the graph from n = 118 nodes to n = 60 nodes.
We run coordinate descent on the original problem to
get an approximate solution. We compute the algebraic
distance (19) and the mass of each node (20).

Figure 6 shows a graphical representation in which the
size of the node represents its mass and the color scheme
indicates the algebraic distance between the nodes. We
pick 60 nodes, whose mass is greater than or equal to the
60th largest mass, to be the seeds in the coarsened graph.
We aggregate nonseed nodes to their neighboring seeds
with the strongest algebraic coupling. The resulting
graph with n = 60 nodes is shown in Fig. 7. (For
this small example, the multilevel approach is not as
competitive as SDPT3, due to the slow convergence rate
of coordinate descent and the additional computation of
the algebraic distance and the coarsening scheme.)

VI. CONCLUSIONS

We propose a multilevel approach for a class of
semidefinite programs on graphs. By building a se-
quence of coarsened graphs, we solve the problem in
a hierarchical fashion. At the coarsest level we employ
Newton’s method for accurate solutions, and at the finer
levels we exploit rank-1 updates in coordinate descent
for approximate solutions. We propose a coarsening
scheme based on the algebraic distance that can be com-
puted efficiently. Numerical experiments indicate that
our multilevel approach is promising and competitive
with the state-of-the-art SDP solvers for large problems.
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Fig. 6: Graphical representation of the IEEE 118-bus test case. Node size represents node mass (20). The blue-red
color scheme indicates the algebraic distance (19) between the nodes.
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